Joint modelling of data from multiples sources

An application to abundance indexes of woodcock wintering in France

Kévin Le Rest, Office National de la Chasse et de la Faune Sauvage
Population monitoring

Assessing changes in ...

Species distribution Demographic parameters Population size

help to define ...

Species status Hunting pressure

Sustainable management
Monitoring programs

Introduction

- Scientific institutions
- Non-profit organizations
- Citizen sciences
- multiple monitoring programs

Materials & Methods

Results

Limitations

What next?

p. 2/12
Woodcock abundance indexes

- Wintering abundance of woodcock in France
 - Counts methods for this species:
 - With pointing dogs during the day (HAI)
 - With a light at night (NAI)

Introduction

Materials & Methods

Results

Limitations

What next?

Relative abundance indexes
Woodcock abundance indexes

Introduction

Materials & Methods

Results

Limitations

What next?

- NAI data

- Limitation:
 Heterogeneous observation effort in time

p. 4/12
Introduction

Materials & Methods

Results

Limitations

What next?

- Limitation:
 Heterogeneous observation effort in space
Joint modelling of both indexes

- **NAI & HAI**

 - **Advantages:**
 - Both type of habitat used by woodcock are sampled
 - Maximise the number and the coverage of the data in space and time

 - **Limitation:**
 - No sampling strategy
Modelling step

- **Specify data distribution**
 - **Count data**
 - Poisson
 - Negative Binomial (overdispersion)
 - NAI: 1.79 (se: 0.06) → >>10
 - HAI: 2.26 (se: 0.05) → >>100
• Specify data distribution

- Poisson
- Negative Binomial (theta = 10)
Modelling step

• Specify data distribution
 – Count data
 • Poisson
 • Negative Binomial (overdispersion)
 – NAI: 1.79 (se: 0.06) \(\rightarrow\) \(>>10\)
 – HAI: 2.26 (se: 0.05) \(\rightarrow\) \(>>100\)
Modelling step

- Specify data distribution
 - Count data
 - Poisson
 - Negative Binomial (overdispersion)
 - NAI: 1.79 (se: 0.06) \rightarrow $>>10$
 - HAI: 2.26 (se: 0.05) \rightarrow $>>100$

- Quantify spatial autocorrelation

```
Introduction
Materials & Methods
Results
Limitations
What next?
p. 7/12
```
Modelling step

- Specify data distribution
 - Count data
 - Poisson
 - Negative Binomial (overdispersion)
 - NAI: 1.79 (se: 0.06) \(\rightarrow \) >>10
 - HAI: 2.26 (se: 0.05) \(\rightarrow \) >>100

- Quantify spatial autocorrelation

- Define a spatial index (random effect)
Modelling step

- Specify data distribution
 - Count data
 - Poisson
 - Negative Binomial (overdispersion)
 - NAI: 1.79 (se: 0.06) → >>10
 - HAI: 2.26 (se: 0.05) → >>100

- Quantify spatial autocorrelation

- Define a spatial index (random effect)

- Identify which variables best explain observed variation in NAI & HAI.
Candidate Variables

Climatic data

Introduction

Materials & Methods

Results

Limitations

What next?

Temperature - December 2015

- 0.2
- 3.5
- 7.0
- 10.5
- 14.0

0 100 km
Prediction step

- Use the model to predict (interpolate) at unsampled locations: 10 x 10 km grid
- Estimate the index at the country scale
- Evaluate prediction errors
An application for 2015-2016 winter

- NAI & HAI : WAI (wintering abundance index)

WAI October 2015 : 0.96 (0.86 – 1.07)

Predicted WAI October 1st 2015

log scale

WAI October 2015 : 0.96 (0.86 – 1.07)
An application for 2015-2016 winter

- NAI & HAI : WAI (wintering abundance index)

WAI November 2015 : 1.16 (1.07 – 1.25)

Predicted WAI November 1st 2015

WAI November 2015 : 1.16 (1.07 – 1.25)
An application for 2015-2016 winter

- NAI & HAI : WAI (wintering abundance index)

WAI December 2015 : 1.31 (1.23 – 1.40)
An application for 2015-2016 winter

- NAI & HAI : WAI (wintering abundance index)

WAI January 1st 2016 : 1.42 (1.34 – 1.50)

Results

Predicted WAI January 1st 2016

p. 10/12
An application for 2015-2016 winter

- NAI & HAI : WAI (wintering abundance index)

WAI February 1st 2016 : 1.44 (1.36 – 1.52)
An application for 2015-2016 winter

- NAI & HAI : WAI (wintering abundance index)

WAI March 1st 2016 : 1.40 (1.32 – 1.49)
Limitations

- Covariates only explain few percents of the variation in the indexes
 - Investigating the effect of others covariates
 e.g. the number of days with T° < 0°C over the last 15 days
 - Collecting more information about the indexes
 e.g. the number of hunters and dogs used for HAI
 e.g. the observer detection for NAI
Next steps

- Validate the approach for others hunting seasons
 - 2010-2011: normal winter
 - 2011-2012: harsh coldspell: February 2012
 - 2016-2017: small coldspell: January 2017

- Long term changes
 - Estimate winter abundance since 10 years (2008-2017)
 - Draw distribution maps for each year
 - Show changes on woodcock wintering distribution
 - Investigate the causes of these changes
Thank you!

Woodcock & Snipe team:
Yves Ferrand
François Gossmann
Claudine Bastat
Damien Coreau

Club National des Bécassiers:
Bruno Meunier
Jean-Marc Desbieys